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Abstract. 'We study consistent deformations of the classical differential calculus on
algebras of functions (and, more generally, commutative algebras) such that differentials
and functions satisfy non-trivial commutation reiations. For a class of such calculi it is
shown that the deformation parameters correspond to the spacings of a lattice. These
differential calculi generate a lattice on a space continuum. The whole setting of a lattice
theory can then be deduced from the continuum theory via deformation of the standard
differential calculus. In this framework one just has to express the Lagrangian for the
continuum theory in terms of differential forms. This expression then also makes sense
for the deformed differential calculus. There is a natural integral associated with the
latter, Integration of the Lagrangian over a space continuum then produces the correct
lattice action for a large class of theories. This is explicitly shown for the scalar field
action and the action for SU(m) gauge theory.

1. Introduction

Non-commutative geometry deals with differential calculus on algebras which are, in
general, not commutative [1]. One of the ideas used to motivate the study of non-
commutative geometry in physics is to remove ultraviolet divergencies in quantum
field theories by replacing coordinates by non-commuting operators (see [2-4], for
example). The present work shows that such a regularization can be achieved by
keeping coordinates commutative, and merely deforming the differential calculus in
such a way that coordinates (or, more generally, functions) no longer commute
with differentials. The differential calculus which we discuss in sections 3-6 is a
deformation of the classical differential calculus in this sense. We find that via this
deformation a continuum theory is replaced by a corresponding lattice theory. Lattice
formulations are amongst the most frequently investigated regularizations of quantum
field theories, in particular if non-perturbative effects are addressed (see [5-9), for
example).

In section 2 we introduce a more general class of differential calculi on
commutative algebras and discuss consistency conditions. Section 3 deals with the
simplest case of only one dimension. In section 4 we formulate gauge theory
in the one-dimensional case and establish some basic relations with lattice gauge
theory. Many features of our formalism are already present in one dimension
and the mathematical formulae derived in this case have obvious generalizations
to dimensions greater than one. Therefore, and also because of pedagogical reasons,
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the one-dimensional case is discussed first in sections 3 and 4. Sections 5 and 6 then
generalize the results to higher dimensions. For a scalar field and for a gauge field
we derive the lattice actions from the corresponding coatinuum actions. In order to
do this we need an integral for the deformed differential calculus. This is constructed
in appendix A.

A generalized Laplace-Beltrami operator is defined in appendix B. We show that
it coincides with the known lattice version of the classical operator.

In appendix C we present a classification of all consistent differential calculi with
real constant coefficients in two dimensions. Some properties of new consistent calculi
are discussed in appendix D. Section 7 contains our conclusions.

2. Differential calculus and consistency conditions

In the ordinary differential calculus on manifolds differentials commute with functions,
ie.

[2¢,dai] =0 (i,7=1,...,n) (2.1)

in terms of (real) coordinates z?. In this work we consider deformations of (2.1) of
the form

[28,2/]=0 (2.2)

n
[of,def} = dz* C¥ (2.3)
k=1
where the C#/, are (complex) constants which are constrained by the requirement
of a consistent differential calculus. An example with interesting relations to physics
has already been studied in [11].

Let us first recall the notion of a differential calculus on an algebra 4 [1,10]. This
is a Z-graded algebra

A= g A4 A=A AA)=(0)  Vr<o.

The elements of A"(A) are called r-forms. There is a C-linear exterior derivative
operator d : A"(A) — ATH1(,4) which satisfies
¢ =0 (24)
Hww') = (dw)w' + (-1)" wdo' (2.5)
where w and o' are r- and r/-forms, respectively.

In our case A is the commutative algebra generated by the coordinate functions
«*. Restrictions on the constants C*/, arise from the following procedures.

(i) Applying ¢ to (2.2) and using (2.3) we find

cl, =C, . (2.6)
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(ii) Commuting d=* through (2.2) leads to

n n
Yotk oit =% ok ot (2.7)
=1 =1

respectively
YoM, et =0 (2.8)
=1

by using (2.6). This means that the n matrices C' with entries C'*, mutually
commute.

(ifi) Commuting z* through (2.3) also yields (2.7) and therefore no additional
conditions.

(iv) Acting with d on (2.3) and using (2.5) enforces the classical commutation rule

da’ do! = —do’ do’ (2.9)

for the differentials. The equations obtained by commuting =* through these relations
are identically satisfied.

Remark. (2.2), (23) and (2.9) define an algorithm to order polynomials in
z' and dz’, eg to write them as linear combinations of the monomials
gt pirded o dadr with i) € i, € - i, and §, < 4, < -+ < 4, < n. The
ordering relations (2.2), (2.3) and (2.9) can be applied, however, in various sequences
and may lead to different results. If (2.6) and (2.7) are satisfied, different ways of
ordering lead to the same result. It is sufficient to check this for cubic monomials
(cf [12, section 5.6]).

We have two natural ways to extend the conjugation * of complex numbers to the
differential algebra A(.A). Besides demanding that * commutes with d and that ** is
the identity, we have the choice between the following two further assumptions:

(a) * is an automorphism of A{.A). Then (2.3) requires the C*¥, to be real.
(b) " is a graded anti-automorphism

(wo') = (1) w'" W (2.10)
for all differential forms w,w’ of grades r and ', respectively. The C¥/, then have
to be imaginary as a consequence of (2.3).

In this work we make the first assumption (a). Only in this case we can have real
coefficients in (2.3) which is essential for the applications in the following sections.

There are examples of (deformed) differential calculi on (non-commutative)
algebras A in the literature (see [10, 13], for example) for which the exterior derivative
operator d can be expressed as a commutator with a certain 1-form 4

df =[9, f] Yfed (2.11)
and, more generally,

dw=[9,w]y (2.12)
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where w is an r-form and {, |, is the commutator or anticommutator depending

on whether r is even or odd. The Leibniz rule (2.5) is then guaranteed and d? = 0
imposes the condition

[92,w]=0 Yew (2.13)
on 9. Let us write 4 as
n .
9= dz'b(x) (2.14)
i=1
with functions b;. From (2.11) with f replaced by z' we find the following necessary

condition for the existence of such a 1-form ¢ in case of the differential calculi under
consideration

Z ci bi = —1 (215)
i=l

where | is the n x n unit matrix. For the standard differential calculus (ie. C* = 0)
there is no 9. If such a ¢ exists for a deformed differential calculus, this can
considerably simplify caiculations. If there is no ¢ it may be possible to enlarge the
original algebra in such a way that a ¢ exists in the larger differential algebra (cf [10]
for the case of quantum groups).

3. Differential calculus in one dimension

The one-dimensional case with only a single coordinate z already exhibits the
essential features, in particular the origin of the connection between non-commutative
differential calculus and lattice theory.
The commutation relations between coordinates and differentials are
[z,dzr]=dza 3G.1)

with an arbitrary realt consiant a. This leads to a consistent differential calculus. As
a consequence of (3.1) we have

zde =de(z+a)" (3.2)
and therefore

f{z)dz = dz f(z + a) (3.3)
for a function f. Commuting f(=) through dz has the effect of a translation of the
argument by a. The differential calculus with ¢ # 0 thus simulates the action of a

discrete translation group.

t Mathematically we may allow a complex constant a. But our interpretation of the calculus is bound to
real a,



Non-commutative differential calculus and lattice gauge theory 1931

Let us introduce z right partial derivative by

df = dz(3 f)(z) . (34
From the Leibniz rule for d we find that § has to satisfy the modified Leibniz rule

(3 fR)(z) = (8 £)() h(z) + f(z +a) (B R)(x) (35)
and we find

(3 7)(=) = <[ f(z+a) - f(2)] (36)

Surprisingly, & is just the discrete derivative. In the limit @ — 0 it becomes the
ordinary partial derivative (on differentiable functions). It follows that a ‘constant’
function in the sense that df = 0 Vz is just a periodic function with period a.

If f is an arbitrary function of =, we can use [f(z),z] = 0, the Leibniz rule for
d and (3.1) to calculate the commutator of f with dz

[f(z),dz] ==, df(2)| =[z,de](3 f){(e) = dea (8 f){(z) =adf. (37)

We also have a left partial derivative defined by

df = (3 f)(x) dz . (38)
The corresponding modified Leibniz rule is

(8 Fh)(=) = (3 f){(z) h(z) + f(z = a) (B R)(=) . (3.9)
Hence

(37)@) = 21 7(=) - flz- )] (3.10)
Comparing this with (3.6) yields

(3 (=)= (8 Nz -a). (3.11)

Remark 1. The differential calculus with the constant e replaced by an arbitrary
function a(z) is also consistent and all the formulae above remain valid. However, it
can be (at least formally) transformed into the calculus with constant e¢. This is seen
as follows.

Let y be a function of z. Then

[y, dy]=[y,dz] (8 y)(=) = [2,dy] (B ¥)(=)
=]z,dz](8y)’=dea(dy)’ =dya(dy)(z)  (312)
using (3.4) and (3.1). This shows that
[¥.dy] =dyely) (3.13)

can be transformed to (3.1) if we can solve the equation (5 y)(z) = a(y)/a. Indeed,
the formal expression z = a [dya(y)~! does the job (see appendix A for the
definition of the integral).
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Remark 2. The main physical point in this article is the use of non-commutative
differential calculus as a bridge between continuum and lattice theories. It is then
natural to choose the z in (2.2) and (2.3) as functions on R™ (or some n-dimensional
manifold). There are, however, many other representations to which the formalism
applies equally well. As an example, the (2m + 1) x (2m + 1} matrix

x = ﬁ diag{c — ma,c— (m —1)a,...,qa,...,c+ ma) (3.14)

(where c is a constant) generates a commutative algebra by matrix multiplication.
Together with

0 ... ... 0

de= |- : (3.15)
0 oot
1 0 ... 0

it satisfies (3.1) and (dz)? = 0. The exterior derivative d is represented by (2.12)
with ¥ = —(1/a)dz.

4, Gauge fields in one dimension
In spite of the non-commutativity between functions and differentials it is possible
to formulate gauge theory in the standard way. In the following this is discussed for
only one dimension. The generalization to higher dimensions is strajghtforward and
essentially only adds indices to the relevant quantities (see section 6). Let

A =dx A(x) 4.1)

be a matrix-valued 1-form which transforms like a connection according to the usual
gauge transformation law

AN=UAU'-dUuU"! (4.2)
where U(z) is a function with values in a matrix group. For a # 0 the last term in
(4.2) involves a finite difference of group elements. The connection component A(z)

is therefore not Lie algebra but rather group algebra valued. From the transformation
formula (4.2) we deduce

Ule + a) Az) ~ A(2) U(e) = (3 U)(e) = < [U(z + a) - U(z)] (43)
which implies that

G(z) = |- a A(z) (4.4)
transforms according to

Glz)=U(z+a)G(z)U{z)"!. (4.5)
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If 1) transforms according to ¥ = U 1» we can define a covariant derivative
Dy :=dp+ Ay (4.6)

which as a consequence of (4.2) satisfies the same transformation law as 1. The left
covariant derivative of 1 defined by

Dy = (V¥)(z) dz @7

then also transforms like + and is explicitly given by
(V¥)(=) = (8 %)) + A(z - ) ¥(= - a)
= 2 [%(2) - Gz - a) (= - )] “8)

If we want to read off covariant right components from (4.6} we are faced with the
problem that the differential dx is not invariant under the adjoint action of the gauge
group, However

Dz :=dr—aA =dxG(zx) 4.9)
is covariant, i.e.
D'z:=U(z) Dz U(z)7 !, (4.10)

In the following we will make the assumption that G(«) is an element of the
gauge group and therefore invertible. This is consistent with the homogeneous
transformation law (4.5). As a consequence of (4.4) the connection component A(x)
is then an element of the group algebra. Defining a right covarignt derivative by

Dy = Dz (V¥)() @.11)
we can conclude that
(V#)(2) = G(2)"'[(8 ¥)(2) + Alz) ¥(=)]
= 2 [G(2) ¥z + @) - $(a)] (412)
transforms covariantly. The covariant differences which appear in (4.8) and (4.12) are

familiar expressions in lattice gauge theory (see [6), for example).
As a consequence we have

(V¥)z) = Gz — a) (Vo) (z —a) . (4.13)

Remark. The equation

Dy =0 (4.14)
is equivalent to
Wz + a) = G(z) (<) (4.15)

and thus generalizes the periodicity condition. Using this fact the boundary conditions
for the quenched or twisted Eguchi-Kawai models [14,15] can be formulated in an

elegant way.
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5. Generalization to higher dimensions
In this section we specify a differential calculus in n dimensions byt
[£%, dz' ) = o' 6 da? {(no summation) (5.1)

with real constants a*. This is just the differential calculus previously considered in
each dimension. It is therefore consistent and the formulae which we have in the
one-dimensional case generalize in an obvious way, By rescalmg of the coordinates
z* we can achieve the condition that all non-vanishing ¢* ate equal and pos:twe.
An advantage of distinguishing the o’s corresponding to different dimensions is the
possibility of taking the limit a* — O for each : separately.

Left and right partial derivatives are introduced by}

df(z) = i(a_if)(w) da! = le dz' (8, )(x) (52)
and we find ) )

(8,0)(=) = = [ S+ ') = ()] (53)

(0_4£)(®) = — [ f(2) ~ £(z ~ a*)] (54)

where we use the notation
(c+a) :=af + 69 a°. (5.5)

According to (2.9) the differentials dz* anticommute as in the standard differential
calculus. This allows us to define a Hodge » operator for the Euclidean§ metric (which
in the coordinates =* has the components 6;;) in the familiar way on products of
differentials by

. , 1 i . i
* (dmll i .d:nik) = m Z etl kik_H_”i“ dmlk.H o -dw’ (5.6)

fhglemresfn

where ¢, . is the totally antlsymmetrlc Levi-Civita symbol. It then satisfies
the familiar rules like (B.3) and (B.4) in appendix B. But because of the non-
commutativity between differentials and functions, the operator * no longer commutes
with functions, We define

* (fl@)w) = (xw) f(z) &7

T As it stands this equation only holds in a specific coordinate system and thus breaks general covariance.
Equation {2.3), however, is invariant under coordinate transformations if C*/ . transforms like a tensor.
t The minus sign in front of an index takes the role of the leftarrow superscript used in the one-dimensional
Case.

§ We can as well consider the Minkowski metric {#;;) = diag(—1,1,...,1}. One may think of identifying
&*2 in (5.1} with the space-time metric. Note, however, that by reversing the sign of one of the eoordinates
£' the corresponding eigenvalue of &'7 will be replaced by —1 {(if we do not change the sign of the
respective a*). The 8% in (5.1) is therefore not necessarily related to the space-time metric.
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(0, Na)

Figure 1. A rectangular N x N lattice with spacing a. The
(Na,0) arrows indicate the way in which the discrete derivatives of
¢ are calculated in (5.12)

(0,0)

for functions f and differential forms w. As a consequence we have
* (de't - da® f(2)) = *(de™ .- de™) f(z—alt - —a'™). (5.8)
In the continuum theory the (Euclidean) Lagrangian for a real scalar field ¢ is
Li=L(-1)*"1(xdg)do + i m?(x¢) o (5.9)

in terms of ordinary differential forms. Let us take this definition over to our non-
commutative framework, Then

L=dz} [ i 8,¢(x) 4 m? QS(m)z] =:dz L(x) (5.10)

i=1

where de = da!...dz™ is the volume form and §; is the discrete derivative. The
corresponding action for a volume V C R” is obtained by integrating £ over V

S:=/vd:n L(z) (5.11)

using the integral defined in appendix A. As shown there, this integral is weli-defined
only if the volume V is the union of n-dimensional rectangular cells with sides of
length af, ¢ = 1,...,n. This amounts to specifying a lattice with spacings o and
taking V' to be the volume which fills the lattice. We should stress, however, that
the lattice structure or, more precisely, the associated discrete translation group is
already encoded in the differential calculus. The evaluation of the integral is now
easily done using (A.11). We obtain

S(V):% z Z

k1=0 kn=0

Nl Na=l o((kyt1)al... (kntl}a™)
f dz L(z)
(

kial,... kqan)

Ni=1 Np-1 n

1 .

=% e al.-'a‘n{ (ai)z [¢(k1a1,...,(ki-l-l)a’,...,k‘nan)
ky=0 kp=0 i=1

—d(kaly. ..k a®) P+ m?o(kdl,... ,kﬂa“)z} . (5.12)

A corner of the lattice has been chosen as the origin of the coordinate system {cf
figure 1). (5.12) is the usual lattice version of the action.



1936 A Dimakis, F Miiller-Hoissen and T Striker
If a! = a2 = ... = a™ =: ¢, the calculus generates a lattice like the one shown in

figure 1 on the continuum over which we integrate. The action can then be rewritten
in the form

SV) = 1(ay" ( S (6= + D ¢i) (5.13)
{60} %

where ¢, is the value of ¢ at the lattice site k and {k, £} represents the set of all
nearest neighbouring sites.

Rernark, If o’ #0,i=1,...,n, the closed 1-form

1.
EEDY = dz (5.14)

satisfies
df =9, fi (5.15)
as a consequence of (the generalization of) (3.7). Moreover, (2.12) and (2.13) are

satisfied. We therefore have a representation of d in the sense of the discussion in
the Jast paragraph of section 2.

6. Gauge theory
In this section we generalize and extend the results of section 4 to the differential
calculus (5.1) in »n dimensions. The ordinary Yang-Mills Lagrangian formuiated in
terms of differential forms and the Hodge operator can be generalized to the non-
commutative calculus, In this way we recover the correct lattice action for lattice
gauge theory, ]
If A=3"; d=* A; is a connection in the sense of section 4 we define

Gi(z) = 1—af A(2) (no summation) . (6.1)
Then

& (%) = Uz + o) Gy(2) U(z) ™! (62)

under a gauge transformation with a group valued function /., The modified
differential

Dz’ = dz* G(z) (no summation) (6.3)
transforms covariantly as

D'zt = U(x) Da U(z)" 1. (6.4)
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If ¢ is a field in the fundamental representation of the gauge group, a left and
right covariant derivative of v are introduced by

D :=di+ A
=3 V_pds = i Dz V. (6.5)

i=1 i=1

One finds the following expressions for these covariant derivatives
(Vi¥)(=) = Gi(2) 7 [(8;9)(«) + Alx) ¥(x)]

= 2 [Gi() dx + ') — (a)] ©5)

(V_9)(®) = == [9(2) = Gulz - &) (z = a))] . 67)
The field strength of A is

F:=dA + A?
=12 deldad [(8,4,)(z) - (8;4)(x) + Ai(z + o¥) 4;(x)

i,

- Aj(z 4 a') Ay(z)]

=15 dotde? = [Gy(z + ¢9) G,(2) - G, ( + ') Gi(2)]

-~ atal
34J

iq. 1 j

i

=3 ! Dot Do (6.8)

Cv aial
1)
and transforms as
F'= U(z)FU(x)™! (6.9)

under a gauge transformation (4.2). In contrast to the differentials d=* the covariant
differentials Dz! do not anticommute as a consequence of the non-commutativity
between functions and differentials. Equation (6.8) relates the field strength F to the
symmetric part of Da! Da/.

Let us now consider the Yang-Mills Lagrangian

Ly = trf[(xF1YF1 4 cc (6.10)

for the gauge group SU(wm) in n dimensions. For the undeformed differential
calculus this is a familiar expression. With the generalized * operator introduced
in section 6 it also makes sense in our non-commutative framework. Remembering
that our » operator does not commute with functions, the reader may expect a strange
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transformation rule for Ly, It is, however, gauge invariant as will be demonstrated
in the following. From (6.8) we have

=Y ﬁ de dzf G,(2)™ Gy(z + a¥)~ 6.11)
Uy
where we used
Gi(2)t = Gy(=)™" . (6.12)
Acting with % on (6.11) and using (5.8) yields
sF=% ﬁ % (d2 d27) G;(z — of — /)1 G,(z — a®)!. (6.13)
1J
Under a gauge transformation this transforms as
* (F) = Uz — a) (xFHY U(z)"! (6.14)

where

R

a=Y) a*. (6.15)

Hence
(xFYF =U(z —a) (*FY)FU(z)™!
= da U(z) L{z) U(z)™! (6.16)
where we have written
(*F1)F = da L(2) (6.17)

with a (matriz-valued) function L(«) and the volume form da. This implies that Ly,
is indeed gauge invariant. Let us now determine L(z) explicitly

1 . .
(xFYF = E o x (dz*dz?) dz* dat
el atala®aq

X Gj(a:-a"—aj+ak+ at)7 Gy(z—a'+af +ab) N G4 ab) Gy(=)
1 _ o .
= Z mdz(Gj(m) 'Gi(z+ )Gz + a’) G; (=)
.7
— Gi(=) ' Gi(z + &)1 Gz + af) Gy(z)) (6.18)
where we have used the identity

* (dzfdz?)dz® dzt = (6% §7¢ - 66/ F)de (6.19)
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which follows from (B.3). Our final result is
1 . )
(«F)F = da E T (1= G;(=) ' Gi(a + o/ )1 Gj(z + a)) Gi(2))  (6.20)
i,f

where | is the unit element of the group. By taking the trace this yields precisely
the Lagrangian which has been proposed for lattice gauge theory (see [8,9] and
references given there). The Lagrangian is actually defined on a space continuum.
As in the case of the scalar field discussed in the previous section, the integration
restricts it to a lattice. The last term in (6.20) then describes a Wilson loop around a
plaquette. If z, denotes a site of the lattice, G;(z,) associates a group element with
the link between the neighbouring sites =, and z5 1= x, + a*. In [14] a reduction
of a lattice gauge theory to a matrix model has been considered by identifying the
variabies G; on the links in the same direction. In our formalism this corresponds to
the restriction to constant variables (since df = 0 for a function f(«) means that f
is periodic with periods a*).

Remark. Let us introduce a gauge theoretical analogue of ¢ defined in (5.14)

Q= - al Dzt . (6.21)

The exterior covariant derivative of ©

pe:=-% %(dDm*+ADm=’+Dm*‘A)

t

=dA+2A2—~Ea—1i(Ada:"+dx"A)

=2F (6.22)

is just the Yang-Mills field strength. (6.8) can also be written in the form F = ©2

7. Conclusions

We think that our results impressively demonstrate the usefulness of non-commutative
differential calculus in physics. We have shown that the deformation (5.1) of the
classical differential calculus on the algebra of functions on a manifold transforms
a continuum theory to a corresponding lattice theory. As examples the cases of
a scalar field and an SU(m) gauge field in »n dimensions have been treated. We
have formulated a common framework which includes both continuum and lattice
theories. They are merely distinguished by the vanishing or non-vanishing of the
deformation parameters which appear in the commutation relations between functions
and differentials. Since the lattice structure (coded in the deformation parameters)
appears at the most basic and common mathematical level needed to formulate
dynamics for physical fields and particles, our prescription for the passage from a
contimuum theory to a lattice theory is universal, i.e. does not depend on the particular
theory.
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A relation between the non-commutative differential calculus discussed in this
work and g-calculus (which plays a role in particular in the context of quantum
groups) has been established in [16].

Among the consistent differential calculi on function algebras we have now two
examples of deformations of the standard differential calculus—the one presented
in section 5 and the calculus of [11]—which are related to physics. There are
further solutions of the consistency conditions. Some examples emerged from
our classification of differential calculi with constant deformation parameters in
two dimensions (appendices C and D). It would be nice to have a corresponding
classification in higher dimensions. Exploring the features of further solutions may
lead vs to new surprises.

Appendix A. Integrals
In this appendix we define an integral for the differential calculus introduced in

section 3 for one dimension and generalized to arbitrary dimensions jn section 5.
The basic property of the indefinite integral is

/ df = f {+ ‘constant’ function) (A1)

for an arbitrary function f. Let us first consider the one-dimensional case. Then, for
example

/dmm:/d(mz)—mdm:xz—f(dww-i-adm) (A2)
using (3.1). This implies

/da:..'r: = %(1‘2 —azT) {A.3)

{plus an arbitrary periodic function). Using (3.4) and the binomial formula we have

okl = /d(m""“) _ /dw B ¥+

=i—/dm [(z+ a)k"‘l—mk"’l]

k41

=3 (kj 1) at! /d:c ghti-t (Ad)
=1

which leads to the formula

k41
oo for =B (L) far

=2

from which the integrals {dz =™ can be calculated recursively. All these formulae
have to be understood modulo addition of an arbitrary periodic function (with period
a). Because of this reason a definite integral is not well defined, in general. The only
exception is the case when the integration domain is a multiple of the period a.
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Lemma.

oo
/ dz z* = axf {(k=0,1,2,...). (A6)

o

FProof. We use induction on k. The formula is easily verified for &£ = 0,1,2

Assuming that it holds for all powers of = smaller than a given k, we obtain from
(A5)

To+a k41
k1) [ d:.'::ck=(mu+a)k+1—x§+l_2(kj1) ot ghtint
zg

=2
= (k+1)azf
using the binomial expansion. O
As a consequence we have
zo+a
| e r@ = a stz (A7)

for polynomials f(z) (by linearity of the integral) and we can extend the definite
integral taken over an interval of length e as a §-distribution to arbitrary functions

s+ a
/ dz =aé,, (A.8)
&

]

{see also [16] for a different proof).

In higher dimensions we define the integral for a function f(z) = f(z!,...,z")
which is of the form

fley= 30 ey, fulah) - fi(a™) (A9)
(with constant coefficients) ;y
/dm f(z) = }: i /ds:l fi (1) - /dx"‘ fi (z™). (A10)
frein
Using the one-dimensional result (A.7) we find
/:mdz flz)=a'--a" flzy) =a' - .a™ &, f (A.11)

where z;; + a stands for (2} + &’,..., 27 + 2™) and

Tota zh4al zg+at .
/ dz ::-..f dml---f dz™ . (A12)
Ty IiD r

0

This definite integral extends as a é-distribution to arbitrary functions f(z).
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Appendix B. The Laplace-Beltrami operator

In section 5 we introduced a Hodge * operator for the non-commutative differential
calcuius (5.1) in n dimensijons{. This allows us to generalize the classical definition

= %d x (=1 (B.1)

(acting on r-forms) of the adjoint operator associated with ¢ to the non-commutative
framework. An r-form w can be wriiten as

wiz) = de*l oirw; ;i (T). (B.2)

Here and in the following summation is understood over ali repeated indices. With
the help of (5.8) and the identities

dz’ % (dz®t .. da'c) = 6% « (da¥ .. dzi*1) - §51 & (dah .. dat*-rdzic)

4o+ (—DFLE & (dp? .. datv) (B.3)
* % (dz? . dzi) = (=1)FP-F) goh . gzt (B.4)
we find
d*dxw(z)= d*d—— 3 w(dzhdetryw;  (z—af - —ar)
=dx =~ 2 dzd % (dz¥ ... dzir) Swy i (z— att = ... = a’r)
£--——1-—)-—1.-:—-—-(1-):Z9:({1:::“2--41:::"')3 w (& —a®—.. ~a')
= (r—1)! R £ T
1 " ) t
%r_)l)'dZ**(dmz Azt ) 0wy, (22— a)
1 n(r-1) ; ;
= r)_ o Y do't - dzit 8, 8_swy;, (2 - a) (B.5)

and similarly

* dxdw(z) = (-1)"" Z (;Il-dmi’ cedet 8;0_;w;, 4 (xz—a)

1 . ;
~ =T dz™ .. .d2’ 8_, 8wy, i (2~ a)) (B.6)

with o defined in (6.15). Using
[9_;,8;]=0 ®B7)

t The metric is taken ¢o be Euclidean and has the components §,; with respect to the coordinates x'.
The following calculations are easily translated to the case of the Minkowski metric with components .,
in the coordinate system x'.
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we obtain for the Laplace-Beltrami operator
A=dé+éd (B.8)

the following formula
1 ; i
Aw(z) = 1 E dzt .- datr 8,0_;w; ; (v —a). (B.9)

Here we recover the lattice version of the Laplace-Beltrami operator (see [18], for
example), apart from the shift = — = — 3", a* in the argument. It appears in the
description of fermions on a lattice by the Dirac-Kahler equation (see [17,18}, for
example).

Appendix C. Classification of two-dimensional calculi

In this appendix we solve the consistency conditions for the class of differential calculi
introduced in section 2 with the restriction to two dimensions and real consiant
coefficients C™7,. We classify the solutions into orbits with respect to GL(2,R)-
transformations which mix the coordinates x?.

Every two-dimensional matrix can be written as a linear combination of the 2 x 2
unit matrix § and a trace-free matrix. Since an Abelian subalgebra of the algebra
of 2 x 2 matrices is at most two-dimensional, the consistency condition [C},C?] = 0
implies

Ci=XI1+4'T (C.1)
with tr T = 0. Then
A=1uch, (C2)

Under a GL(2, R)-transformation with matrix A = (A}) the matrices C’ transform
as follows

CP= A (AC A = (AN M+ (A7) (ATATY) . (C3)
Hence

Cim N T (C.4)
with

N=AlN pf=aAly T =ATAT (C.5)

The next step is to choose representatives for T from every orbit of real trace-
free matrices with respect to the adjoint action of GL(2,R) which is the same as
the adjoint action of SL(2,R). The orbits are easily determined and we discuss
convenient representatives in turn. For each of them we have to solve the consistency
condition (2.6) which means that the second row of C! is equal to the first row of C2,
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(1) T = 0. The consistency condition (2.6) enforces ' = 0 and therefore C* = 0

which is the classical (undeformed) differential caiculus.
(2) Two other orbits are represented by

T=:i:(? g) : (C6)

It is sufficient to treat the case with the positive sign since the sign can be absorbed
into pt. (2.6) requires u! = A%, A! = 0 so that

g 0 N0
CI:(AZ 0) czz(#z Az) .

The isotropy group of T is

ce={ (2 9)

(a) If A% = 0 (and p? # 0) we can use a Gp-transformation (with suitably chosen a)
to achieve u? = 1. Hence

C' = (g g) C= (? g) X (C.7)

(b) If A\? 0 we can use the isotropy group to arrange for A\*> = 1. This breaks G,
to the subgroup of matrices

(é ?) (beR).

For these matrices and the C' given above the transformation law (C.4) takes the
simple form

a,be':lR,a;éO}.

ct=(! c?=sbC +C? (C8)

which shows that we can choose b to eliminate p2. We arrive at

(1) e-(39)

(3) Another family of orbits is represented by
1 0
Tzﬂ(o _1) (BER,B#0). (C.10)

It is sufficient to consider the case 8 = 1 since G can be absorbed into p'. (2.6) now
leads to ! = X!, u? = —)2 The isotropy group of T is in the present case

a={ (3 2)

a,beﬁ&,a;‘:O,b;éO}.
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(C4) with A € G becomes

Cl=aX(1+T) C2=bX(I-T) (C.11)
so that we can transform 2X¢ to 1 if AY # 0. We thus obtain the following two
solutions

1_ (00 ._ {00

a=(99) e=(39) e

and )
1_{1 0 2_{(0 0

cl= (0 0) Cl= (0 1) (C.13)

(4) The remaining family of orbits is represented by
0 1

T=6(_1 0) (BeR, B#0). (C.14)

Again, we only have to consider 8 = 1. (2.6} leads to
1 _12
C'= (22 ;1 ) C2=TC!. (C.15)

It is more convenient to express C! in the form

1_ cOsy ~Siny
C=r (sinx cosx) (C.16)

with p, x € R. The isotropy group of T is

GT={a (cosw “sm“o) la,f.pE]R,a;éO}

sin ¢ COS ¢

and can be used to transform p to 1. Under the remaining Gp-transformations with
a = 1 the transformation law (C.4) for our matrix C! becomes

€' = (cos | —sin @ T) C! (C17)
s0 that
n_ [cos{e+x) —sin(e+ x))
¢ = (Sin(tp+ x) cos(etx)/ (C18)

Choosing ¢ = ~x we end up with

c'= ((1) (1)) = (_01 (1)) : (C.19)
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Let us summarize our results.

Theorem. All consistent differential calculi satisfying the commutation relations (2.3)
with real constant coefficients C*/, in two dimensions are given modulo GL(2,R)-
transformations by (C.7), (C.9), (C.12), (C.13), (C.19) and the standard (undeformed)
caiculus.

The classification is the same for purely imaginary coefficients C%,. The
corresponding representatives of orbits are simply obtained by multiplication of the
C%,, found above with the imaginary unit i. Since the requirement of having an
operation * on the differential algebra which generalizes the conjugation of complex
numbers (see section 2) restricts complex coefficients C%, to be either real or
imaginary, we thus have a complete classification in two dimensions.

(C.7) is the two-dimensional version of the calculus considered in [11], (C.12) and
(C.13) are the direct sum of one-dimensional calculi (see section 3). (C.9) and (C.19)
determine new differential calculi and we refer to appendix D for a brief discussion.

Appendix D. Additional differential calculi in two dimensions

In appendix C we have determined and classificd all consistent differential caleuli
of the form (2.2) and (2.3) with real or imaginary constant coefficients C*7, in two
dimensions. Besides direct sums of the one-dimensional calculus of section 3 there
are modulo GL{2,R)-transformations three additional possibilities which we discuss
in the following,

(1) The first is given by
[2!,dz'] =0

[#',d2?] =0 -
[£%,dz'] =0 ®-D

[2%, d2?] = gdz?

where ¢ is a complexj parameter. For g = 1 this corresponds to (C.7). This is the
two-dimensional version of the differential calculus studied in [11]. For this calculus
there is no I-form J to express d as the (anti-) commutator with ¥ (see the last
paragraph of section 2).

If we define left and right partial derivatives by

df = 8_,f dz' = da'* 8, f (D.2)
then
_ 8 g[8V R
01= 5172 (8:::2) 9-2= 52 (03)

t The two possibilities to extend the complex conjugation to the whole differential algebra discussed in
section 2 constrain ¢ to be real or imaginary.
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and

8 qf 8\ a
31=ﬁ+§(@) O == (D.4)

where 8/8x* are ordinary partial derivatives.
(2) The second calculus is

[z!,dz!]=0

[2}, d2e?] = qda?

[«%, de'] = qda?

[«?, dz?] = qdx?

(D.5)

and corresponds to (C.9) for ¢ = 1. The exterior derivative d can be expressed in
the form (2.12) with the 1-form

¥ = —% dz? . (D.6)
The partial derivatives are realized by
8 ) 1 8
6_1_exp(-q—é—5§-)% 3_2—3[1—6){[)(—‘2@)] (D7)
and '
8 ) 1 a3
61=exp(q-é—;i)3£f 82:5[8}(})((1@)—1]. (D.8)
Their action on a function f(z!,x?) is given by
8
(8.1F)(a" 2% = 3—;(9:‘&2 —q) (D.9)
1
(8_2f)z2h) = o [ (2!, 2%) - f(a!,2? - @)] (D.10)
and
1,2 of . 1 .2
(B}, 2% = 25 ()27 + o) (D.11)
1
(8, 1)(=! 2% = 2 [f(w‘awz +q) - f(e! 2] . (D.12)

(3) The third calculus is
[z!, d2!] = gdz!
[z}, d2?] = gda?
13
[2%, da!] = gda? (B13)

[2?, da?) = —qdz! .
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When ¢ = 1 this corresponds to (C.19). The exterior derivative d can be expressed
in the form (2.12) with the 1-form

9 = -é dz! (D.14)

The left and right partial derivatives are realized by

(0.1, e) = 1 | £t o) - (eos (9 25 ) 1) a1 = 0, (013)
0n(wah =2 (sin (4527) 1) = 0,9 ®.16)
and

BNt =1 | (o8 (052 ) 1)t + 0.0h) - (50 (D7)
(B:)(h, 2 = 3 (sin (0525 ) 1) (& + 0.5 0.18)

respectively. Introducing z := (z! 4+ iz?)/2, the above commutation relations can be
written as

[z,dz] = gqdz

*,dz] =10
[27,dz] .19
[z,d2"]=0

{z*,d"] = ¢* d2*

where the * denotes complex conjugation. This calculus thus emerges from the sum
of two complex one-dimensional calculi

[2,d2?] = q; 67 dod (no summation) (D.20)

by imposing the constraints (z')* = 2%, ¢f = ¢, Each of the one-dimensional
calculi is a complex version of the real calculus considered in section 3. The partial
derivatives obtained by writing d f as a linear combination of dz and dz" are discrete
derivatives.

It still has to be seen whether the last two calculi listed above have applications to
physics. Relaxing the assumption that the C*/ in (2.3) are constants and replacing
them by functions of the «* will lead to further consistent differential calculi. The
question whether these can be transformed to calculi with constant coefficients is a
complicated problem (see the first remark in section 3).
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