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Non-commutative differentia1 calculus and lattice gauge 
theory 
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Institut f i r  Theoretische Physik, Bunsenstrasse 9, Goltingen, Federal Republic of 
Germany 

Received 11 November 1992 

Abslract We sludy consistenl deformations of the classical differenlial calculus on 
algebras of functions (and, more generally, commutative algebras) such that differentials 
and functions satisfy non-trivial commutation relatiom. For a class of such calculi it is 
shown thal the deformation parameters correspond to the spacings of a lattice. These 
differential calculi generaE a lattice on a space continuum. The whole setting of a lattice 
theory can then be deduced from the continuum iheory via deformation of the slandard 
differential calculus. In this framework one just has lo express the Lagrangian for the 
continuum theory in terms of differential forms. This expression then also makes sense 
for the deformed differential calculus. There is a nalural integral associated with the 
Mer.  Integration of the Lagrangian over a space continuum then produces the c o m t  
lallice action for a large class of theories. This is aplicitly shown for the scalar field 
action and the aclion for SU(m) gauge theory. 

1. Introduction 

Non-commutative geometry deals with differential calculus on algebras which are, in 
general, not commutative [l]. One of the ideas used to motivate the study of non- 
commutative geometiy in physics is to remove ultraviolet divergencies in quantum 
field theories by replacing coordinates by non-commuting operators (see [2-4], for 
example). The present work shows that such a regularization can be achieved by 
keeping coordinates commutative, and merely deforming the differential calculus in 
such a way that coordinates (or, more generally, functions) no longer commute 
with differentials. The differential calculus which we discuss in sections 3 6  is a 
deformation of the classical differential calculus in this sense. We find that via this 
deformation a continuum theory is replaced by a corresponding lattice theory. Lattice 
formulations are amongst the most frequently investigated regularizations of quantum 
field theories, in particular if non-perturbative effects are addressed (see [S-91, for 
example). 

In section 2 we introduce a more general class of differential calculi on 
commutative algebras and discuss consistency conditions. Section 3 deals with the 
simplest case of only one dimension. In section 4 we formulate gauge theory 
in the one-dimensional case and establish some basic relations with lattice gauge 
theory. Many features of our formalism are already present in one dimension 
and the mathematical formulae derived in this case have obvious generalizations 
to dimensions greater than one. Therefore, and also because of pedagogical reasons, 
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the onedimensional case is discussed fust in sections 3 and 4. Sections 5 and 6 then 
generalize the results to higher dimensions. For a scalar field and for a gauge field 
we derive the lattice actions from the corresponding continuum actions. In order to 
do this we need an integral for the deformed differential calculus. This is constructed 
in appendix k 

A generalized Laplace-Beltrami operator is defined in appendix B. We show that 
it coincides with the known lattice version of the classical operator. 

In appendix C we present a classilication of all consistent differential calculi with 
real constant coefficients in two dimensions. Some properties of new consistent calculi 
are discussed in appendix D. Section 7 contains our conclusions. 

A Dimakis, F MUIler-Hoissen and T Striker 

2. Differential calculus and consistency conditions 

In the ordinaly differential calculus on manifolds differentials commute with functions, 
ie. 

[ z ' , d d ] = O  ( i , j = l ,  ..., n) (2.1) 

in terms of (real) coordinates z'. In this work we consider deformations of (2.1) of 
the form 

[z ' ,  2'1 = 0 
n 

[z ' ,  d z j ]  = dzk  C'j, 
k = l  

where the C'j are (complex) constants which are constrained by the requirement 
of a consistent differential calculus. An example with interesting relations to physics 
has already been studied in [ll]. 

Let us first recall the notion of a differential calculus on an algebra d [l,  IO]. This 
is a Z-graded algebra 

~ ( d )  = @ / j (A)  : (A)  = A  / j (A )  = [O} V r  < 0 .  
rEz 

The elements of A'(d) are called r-forms. There is a C-linear euerior derivarive 
operator d : A'(d) -+ A r t l ( d )  which satisfies 

d2 = 0 
d(ww') = ( d w ) ~ ' + ( - l ) ~ w d w '  

where w and w' are r- and +-forms, respectively. 

z'. Restrictions on the constants C'jk arise from the following procedures. 

(i) Applying d to (2.2) and using (23) we find 

In our case d is the commutative algebra generated by the coordinate functions 
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(ii) Commuting dz' through (2.2) leads to 
n. n 

respectively 

by using (2.6). This means that the n matrices C' with entries Cik,  mutually 
commute. 
(iii) Commuting xk through (2.3) also yields (2.7) and therefore no additional 
conditions. 
(iv) Acting with d on (2.3) and using (2.5) enforces the classical commutation rule 

. .  
dx' dx' = -dxj dx' (2.9) 

for the differentials. The equations obtained by commuting zk through these relations 
are identically satisfied. 

Remark. (U), (2.3) and (2.9) define an algorithm to order polynomials in 
xi and dxj, e.g. to write them as linear combinations of the monomials 
zit . . . r"dzj1 . . . dxj. with i 1 x 2 .  < i < . . , < i, and j ,  < j, < . . . < j, < n. The 
ordering relations (2.2), (23) and (2.9) can be applied, however, in various sequences 
and may lead to different results. If (2.6) and (27) are satisfied, different ways of 
ordering lead to the same result. It is sufficient to check this for cubic monomials 
(cf [I5 section 5.61). 

We have two natural ways to extend the conjugation * of complex numbers to the 
differential algebra A(d).  Besides demanding that * mmmutes with d and that * * is 
the identity, we have the choice between the following two further assumptions: 
(a) * is an automorphism of A(d).  Then (2.3) requires the C i j k  to be real. 
(b) * is a graded anti-automorphism 

(WW' ) .  = ( - l ) r+w'*w* (2 10) 

for all differential forms W ,  w' of grades T and P', respectively. The Ci jk  then have 
to be imaginaly as a consequence of (2.3). 

In this work we make the first assumption (a). Only in this case we can have real 
coefficients in (2.3) which is essential for the applications in the following sections. 

There are examples of (deformed) differential calculi on (non-commutative) 
algebras A in the literature (see [lo, 131, for example) for which the exterior derivative 
operator d can be expressed as a commutator with a certain 1-form IJ  

d f = [ I J , f l  V f E d  (2.11) 

dw = IIJ 3 U](,) 

and, more generally, 

(2.12) 
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where w is an r-form and [ , is the commutator or anticommutator depending 
on whether r is even or odd. The Leibniz rule (2.5) is then guaranteed and d2 = 0 
imposes the condition 

[ f f Z , w ] = O  vu (2.13) 

A Dimakk, F Miiller-Hoissen and T Swiker 

on 29. Let us write ff as 

(2.14) 

with functions bi. From (2.11) with f replaced by zi we find the following necessary 
condition for the existence of such a 1-form ff in case of the differential calculi under 
consideration 

(2.15) 

where I is the R x R unit matrix. For the standard differential calculus (i.e. C' = 0) 
there is no 0. If such a ff exists for a deformed differential calculus, this can 
considerably simplify calculations. If there is no Up it may be possible to enlarge the 
original algebra in such a way that a 19 exists in the larger differential algcbra (cf [lo] 
for the case of quantum groups). 

3. Differential calculus in one dimension 

The onedimensional case with only a single coordinate I already exhibits the 
essential features, in particular the origin of the connection between non-commutative 
differential calculus and lattice theory. 

The commutation relations between coordinates and differentials are 

[z, d r l =  d i u  (3.1) 

with an arbitrary realt constant a. This leads to a consistent differential calculus. As 
a consequence of (3.1) we have 

z" d r  = d s ( x  + a)n ( 3 4  

and therefore 

f ( z ) d z = d r f ( z + a )  (3.3) 

for a function f. Commuting f(r) through d r  has the effect of a translation of the 
argument by a. The differential calculus with a f 0 thus simulates the action of a 
discrete translation group. 

t Mathemalieally we may allow a complex constant a,  But our interpretation of the calculus is bound to 
real a. 
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Let us introduce a right partial derivative by 

df = d x ( 2  f)(z) . 

( Z  f h ) ( l )  = ( i f ) ( z )  h(+) t f(. t a )  ( Z W )  

(3.4) 

From the Leibniz rule ford we find that z has to satisfy the modified Leibniz rule 

(3.5) 

(3.6) 

and we find 

Surprisingly, 2 is just the discrete derivative. In the limit a + 0 it becomes the 
ordinaly partial derivative (on differentiable functions). It follows that a 'constant' 
function in the sense that df = 0 Vz is just a periodic function with period a. 

If f is an arbitrary function of I, we can use [f( x)  , I] = 0, the Leibniz rule for 
d and (3.1) to calculate the commutator of f with dx 

[ f ( z ) ,  dx]  = [I, d f ( z ) ]  = [z, d z ]  (3 f)(z) = d x a  (i !)(I) = a d f  

We also have a left partial derivative defined by 

df = ( z f ) ( z ) d + .  

The corresponding modified Leibniz rule is 

(5 fh) (x)  = ( Z f ) ( x ,  h(x) t f(. - a )  (5 h ) ( r )  , 

Hence 
1 (g f ) ( x )  = ;if(.) - f(. - a l l  . 

Comparing this with (3.6) yields 

(5 f ) ( x )  = ( 3 ' f ~ ~  - a )  . 

(3.7) 

( 3 4  

(3.9) 

(3.10) 

(3.11) 

Remark I .  The differential calculus with the constant a replaced by an arbitrary 
function a(.) is also consistent and all the formulae above remain valid. However, it 
can be (at least formally) transformed into the calculus with constant a. This is seen 
as follows. 

Let y be a function of x. Then 

L Y ,  d y l =  [ Y  I d ~ l  ( ~ Y ) ( s )  = [I, ~ Y I ( ~ Y ) ( = )  
-+ 

= [ z , d z ] ( 3 ' y )  - - d x a ( g  y)' = d y a ( 8  y)(z) (3.12) 

using (3.4) and (3.1). This shows that 

[ Y  3 dy 1 = d y  a ( ~ )  (3.13) 

can be transformed to (3.1) if we can solve the equation (3 y)( z) = a(y)/a.  Indeed, 
the formal expression z = a f d y a ( y ) - '  does the job (see appendix A for the 
definition of the integral). 



1932 A Dimakis, F Muller-Hoissen and T Strikr 

Remark 2. The main physical point in this article is the use of non-commutative 
differential calculus as a bridge between continuum and lattice theories It is then 
natural to choose the xi in (22) and (2.3) as funclions on R" (or some n-dimensional 
manifold). There are, however, many other representations to which the formalism 
applies equally well. As an example, the (2m + 1) x (2m + 1) matrix 

1 
2 m  + =  - d i a g ( c - m a , c - ( m - I ) a  ,..., a ,..., c + m a )  (3.14) 

(where c is a constant) generates a commutative algebra by matrix multiplication. 
'Ibgether with 

dx  = 
. .  

1 0 ... 0 

(3.15) 

it satisfies (3.1) and (dx)2 = 0. The exterior derivative d is represented by (212) 
with ZP = -( l / a )  dx. 

4. Gauge fields in one dimension 

In spite of the non-commutativity between functions and differentials it is possible 
to formulate gauge theory in the standard way. In the following this is discussed for 
only one dimension. The generalization to higher dimensions is straightfonvard and 
essentially only adds indices to the relevant quantities (see section 6). Let 

A = d + A ( x )  (4.1) 

be a matrix-valued I-form which transforms like a connection according to the usual 
gauge transformation law 

A' = U A U-' - dU U-' ( 4 4  

where U(+) is a function with values in a matrix group. For ai # 0 the last term in 
(4.2) involves afrnire difference of group elements. The connection component A(+) 
is therefore not Lie algebra but rather group algebra valued. From the transformation 
formula (4.2) we deduce 

U ( z + a ) A ( x ) - A ' ( x ) U ( z ) = ( d U ) ( x ) =  - [ U ( i + a ) - U ( + ) ]  (4.3) 
1 
U 

which implies that 

G(+) := I - a A(+) 

transforms according to 

G'(x) = U ( +  f a )  G ( x )  U ( + ) - ]  
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If $ transforms according to $' = U $ we can define a covariant derivative 

D+ := d$ + A +  (4.6) 
which as a consequence of (4.2) satisfies the same transformation law as $. The lefl 
covariant derivative of $ defined by 

D$ := (6 $)(x) d r  

then also transforms like $ and is explicitly given by 

(5 +I(.) = (5 $ ) ( E )  t A(= - a )  +(x - U) 
1 

= - [ $ ( ~ ) - G ( x - ~ ) $ ( r - u ) ] .  
Q 

(4.7) 

If we want to read off covariant right components from (4.6) we are faced with the 
problem that the differential dx is not invariant under the adjoint action of the gauge 
group. However 

DX := dx  - U A = d l  G(x) (4.9) 
is covariant, i.e. 

D'r := U ( s )  Dx U(r)-' . (4.10) 

In the foUowing we will make the assumption that G(+) is an element of the 
gauge group and therefore invertible. This is consistent with the homogeneous 
transformation law (4.5). As a consequence of (4.4) the connection component A(r)  
is then an element of the group algebra. Defining a right covariant derivative by 

D$ := Dx (?$)(t) (4.11) 

we can conclude that 

(?$)(x) = G(r)- ' [ (Z$)(r)  +A(x)$(+)I  

(4.12) 

transforms covariantly. The covariant direrences which appear in (4.8) and (4.12) are 
familiar expressions in lattice gauge theory (see [6], for example). 

(o$)(t) = G(z - U )  (?$)(z - U ) .  

As a consequence we have 

(4.13) 

Remark. The equation 

D$=O (4.14) 

is equivalent to 

$(x + a )  = G(+) $(+) (4.15) 

and thus generalizes the periodicity condition. Using this fact the boundary conditions 
for the quenched or twisted Eguchi-Kawai models 114,151 can be formulated in an 
elegant way. 
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5. Generalization to higher dimensions 

In this section we specify a differential calculus in n dimensions byt 

A Dimakis, F Miiller-Hoissen and T Striker 

[ zi , d z j  ] = ai 6' j  d z j  (no summation) (5.1) 

with real constants ai. This is just the differential calculus previously considered in 
each dimension. It is therefore consistent and the formulae which we have in the 
one-dimensional case generalize in an obvious way. By rescaling of the coordinates 
zi we can achieve the condition that all non-vdnishing ai are equal and positive. 
An advantage of distinguishing the a's corresponding to different dimensions is the 
possibility of taking the limit ui A 0 for each i separately. 

Left and right partial derivatives are introduced by1 
n n 

d f ( z )  = x(a- , f ) (z )  d z i  = dz' (aif)(r)  ( 5 4  
i= t i=l 

and we find 

(5.3) 

where we use the notation 

(. + u i ) j  := .j + 6ij .i . (5.5) 

According to (2.9) the differentials dz' anticommute as in the standard differential 
calculus. This allows us to define a Hodge * operator for the Euclidean! metric (which 
in the coordinates zi has the components h i j )  in the familiar way on products of 
differentials by 

where E ~ , , , , ~ ,  is the totally antisymmetric Levi-Civita symbol. It then satisfies 
the familiar rules like (B.3) and (B.4) in appendix B. But because of the non- 
commutativity between differentials and functions, the operator * no longer commutes 
with functions. We define 

* ( f ( z ) u )  : = ( * W ) f ( z )  (5.7) 

t As it sands this equation only holds in a specific coordinate system and thus breaks general covariance. 
Equation (2.3), however, is invariant under coordinate transformations if C'J,  transforms like a tensor. 
t The minus sign in front of an index takes the role of the leftarrow superscript used in the onedimensional 

$ We can as well consider the Minkomki metric ( q i j )  = diag(-1, 1, . . . ,1). One may think of Identifying 
6'J in (5.1) with the space-time metric. Note, however, that by reversing the sign of one of the coordinates 
zi  the corresponding eigenvalue of 6'1 will be replaced by -1 (if we do not change the sign of the 
respective a'). The 6;J  in (5.1) is therefore not necessarily relaled U) the space.time metric. 

case. 
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Figure 1. A rectangi ; a. The 
arrows indicate the way in which the discrete derivatives of 
@ are calculated in (5.12). 

' N x N lattice with spa 

for functions f and differential forms w.  As a consequence we have 

* (dx'l. . .dx'h f ( x ) )  = *(d r" .  . .dx") f(r - ail - . . . - U'&) . (5.8) 

In the continuum theory the (Euclidean) Lagrangian for a real scalar field 4 is 

L:= i ( - l )n - ' (*d4)d++  i m Z ( * + ) 4  (5.9) 

in terms of ordinary differential forms. Let us take this definition over to our non- 
commutative framework. Then 

(5.10) L = d x  $ [  ~ 8 i + ( r ) z + m 3 0 ( x ) 2  =:dxL(x)  

where d z  = dz' . . . dxn is the volume form and ai is the discrete derivative. The 
corresponding action for a volume V c Rn is obtained by integrating L over V 

1 n 

S : =  d x L ( r )  (5.11) 

using the integral defined in appendix A As shown there, this integral is well-defined 
only if the volume V is the union of n-dimensional rectangular cells with sides of 
length U : ,  i = 1,. . . , n. This amounts to specifying a lattice with spacings ai and 
taking V to be the volume which fills the lattice. We should stress, however, that 
the lattice structure or, more precisely, the associated discrete translation group is 
already encoded in the differential calculus. The evaluation of the integral is now 
easily done using (All). We obtain 

J ,  

NI-1 N.-1 

= f  c...c { 2 & [ + ( k , U ' ,  . . . ,(ki+l)U',.  . ., k,a")  
kl=U k.=U i = l  

-4(k1 U', ..., k , c ~ ~ ) ] ~ + m ~ O ( k 1 ~ '  ,..., k , , ~ " ) ~  . (5.12) 

A corner of the lattice has been chosen as the origin of the coordinate system (cf 
figure 1). (5.12) is the usual lattice version of the action. 

1 
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If a' = a2 = . . . = a" =: a, the calculus generates a lattice l i e  the one shown in 
figure 1 on the continuum over which we integrate. The action can then be rewritten 
in the form 

where bk is the value of 4 at the lattice site k and {k, e )  represents the set of all 
nearest neighbouring sites. 

Remark. If ai # 0, i = 1,. . . , n, the closed I-form 

(5.14) 

satisfies 

d f  = f I (5.15) 

as a consequence of (the generalization 00 (3.7). Moreover, (2.12) and (2.13) are 
satisfied. We therefore have a representation of d in the sense of the discussion in 
the last paragraph of section 2. 

6. Gauge theory 

In this section we generalize and extend the results of section 4 to the differential 
calculus (5.1) in n dimensions. The ordinary Yang-Mills Lagrangian formulated in 
terms of differential forms and the Hodge operator can be generalized to the non- 
commutative calculus. In this way we recover the correct lattice action for lattice 
gauge theory. 

If A = xi d r i  Ai is a connection in the sense of section 4 we define 

G,(r) := I - a i A i ( + )  (no summation). (6.1 1 

Then 

G';(x) = U(Z t a ' ) G i ( ~ ) U ( x ) - '  (6.2) 

under a gauge transformation with a group valued function U. 
differential 

The modified 

Dr' := d r ' G , ( r )  (no summation) (6.3) 

transforms covariantly as 

D'r' = U ( z )  Dr' U(r) - l .  (6.4) 
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If $ is a field in the fundamental representation of the gauge group, a left and 
right covariant derivative of $ are introduced by 

D$ := d$ + A $  

One finds the following expressions for these covariant derivatives 

The field strength of A is 

F := dA + A' 

- 1  - d z ' d r j  [ ( 8 , A j ) ( l z )  - ( a j A i ) ( + )  + A i ( x  + a j )  Aj( i )  
i ,j 

- A j ( a : + a i ) A i ( r ) ]  

, , 1  = d z ' d d  - [ G;(z + a J )  G j ( s )  - Gj(z + ui) G;(z)] a ' d  
i,j 

and transforms as 

F' = U(z) F U(z)-' (6.9) 

under a gauge transformation (4.2). In contrast to the differentials d+' the covariant 
dierentials Dz' do not anticommute as a consequence of the non-commutativity 
between functions and differentials. Equation (6.8) relates the field strength F to the 
symmetric part of Dz' Dd. 

Let us now consider the Yang-Mills Lagrangian 

LyM := tr [ (* Ft) F ]  f cc (6.10) 

for the gauge group SU(m) in n dimensions. For the undeformed differential 
calculus this is a familiar expression With the generalized * operator introduced 
in section 6 it also makes sense in our non-commutative framework Remembering 
that our * operator does not commute with functions, the reader may expect a strange 



1938 

transformation rule for Lyw It is, however, gauge invariant as will be demonstrated 
in the following. From (6.8) we have 

A Dimakis, F Msliler-Hoissen and T Sinker 

where we used 

G; (z )~  = G,(z)-'. 

Acting with * on (6.11) and using (5.8) yields 

(6.11) 

(6.12) 

(6.13) 

Under a gauge transformation this transforms as 

* (F") = U(x- a)(*Ft)  U(z)-' (6.14) 

where 
n 

a : = C a k  
k = l  

Hence 

(*F't) F' = U ( r  - a) ( * F t )  F U(z)-' 

= dz U ( X )  L(x) U(z)- '  

(6.15) 

(6.16) 

where we have written 

( * F t )  F = dzL(z) (6.17) 

with a (matrix-valued) function L( z) and the volume form ds.  This implies that E,, 
is indeed gauge invariant. Let us now determine L( z) explicitly 

( * F t ) F =  c a t a j a k a l  * (dr 'dzj)  dzkdzf  
i , j , k , f  

x Gj(z-a'-aj+ak+a')-' G i ( r - a ' t ak+af ) - '  Gk(z+aL) C,(z) 

d z (  Gj (z) - 'G, ( r+a ' ) - lGi ( r+  a j )Gj (z )  1 =E- 1,3 

- Gj(z)- 'Gi(z+ a j ) - 'Gj (z+a ' )Gi(z) )  (6.18) 

where we have used the identity 

* (dz 'dr j )dzkdrL = (6'k6jf - 6"6jk)dz (6.19) 
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which follows from (B.3). Our final result is 

(6.20) 

where I is the unit element of the group. By taking the trace this yields precisely 
the Lagrangian which has been proposed for lattice gauge theory (see [8,9] and 
references given there). The Lagrangian is actually defined on a space continuum. 
As in the case of the scalar field discussed in the previous section, the integration 
restricts it to a lattice. The last term in (6.20) then describes a Wilson loop around a 
plaquette. If s, denotes a site of the lattice, G i ( s m )  associates a group element with 
the link between the neighbouring sites I- and sp := so + a i .  In [14] a reduction 
of a lattice gauge theory to a matrix model has been considered by identifying the 
variables Gi on the links in the same direction. In our formalism this corresponds to 
the restriction to constunt variables (since df = 0 for a function f(s) means that f 
is periodic with periods a i ) .  

Remark. Let us introduce a gauge theoretical analogue of 1p defined in (5.14) 

(6.21) 

The exterior covariant derivative of O 

DO := - - ~ z ( d D z i + A D s ' + D s ' A )  1 

i 

1 7 ( A d s '  + dz' A )  a = dA + 2A' - 
i 

= 2 F  (6.22) 

is just the Yang-Mills field strength. (6.8) can also be written in the form F = Oz. 

7. Conclusions 

We think that our results impressively demonstrate the usefulness of non-commutative 
differential calculus in physics. We have shown that the deformation (5.1) of the 
classical differential calculus on the algebra of functions on a manifold transforms 
a continuum theory to a corresponding lattice theory. As examples the cases of 
a scalar field and an SU(m) gauge field in n dimensions have been treated. We 
have formulated a common framework which includes both continuum and lattice 
theories. They are merely distinguished by the vanishing or non-vanishing of the 
deformation parameters which appear in the commutation relations between functions 
and differentials. Since the lattice structure (coded in the deformation parameters) 
appears at the most basic and common mathematical level needed to formulate 
dynamics for physical fields and particles, our prescription for the passage from a 
continuum theory to a lattice theory is universal, i.e. does not depend on the particular 
theory. 
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A relation between the non-commutative differential calculus discussed in this 
work and q-calculus (which plays a role in particular in the context of quantum 
groups) has been established in [16]. 

Among the consistent differential calculi on function algebras we have now two 
examples of deformations of the standard differential calculus-the one presented 
in section 5 and the calculus of [Ill-which are related to physics. There are 
further solutions of the consistency conditions. Some examples emerged from 
our classilication of differential calculi with constant deformation parameters in 
two dimensions (appendices C and D). It would be nice to have a corresponding 
classification in higher dimensions. Exploring the features of further solutions may 
lead us to new surprises. 

Appendix A. Integrals 

In this appendix we define an integral for the differential calculus introduced in 
section 3 for one dimension and generalized to arbitrary dimensions in section 5. 
The basic property of the indefinite integral is 

J d  f = f (+'constant' function) ('4.1) 

J J  
for an arbitrary function f .  Let us first consider the onedimensional case. Then, for 
example 

d r r  = d(r2)  - r d z  = zc2 - ('4.2) 

using (3.1). This implies 

d r r = Z ( z  -ai) J ('4.3) 

(plus an arbitrary periodic function). Using (3.4) and the binomial formula we have 

('4.4) 

which leads to the formula 

from which the integrals Jdr  I" can be calculated recursively. NI these formulae 
have to be understood modulo addition of an arbitrary periodic function (with period 
a). Because of this reason a definite integral is not well defined, in general. The only 
exception is the case when the integration domain is a multiple of the period a. 
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Lemma. 

d x z k  = a 2: ( l e  = 0,1,2,. . .). (W 

Proof. We use induction on IC. The formula is easily verified for IC = 0,1,2 
Assuming that it holds for all powers of z smaller than a given IC, we obtain from 
(A51 

k = ( I C +  l )uzo  

using the binomial expansion. 

As a consequence we have 

0 

for polynomials f (z )  (by linearity of the integral) and we can extend the definite 
integral taken over an interval of length a as a 6-distribution to arbitrary functions 

rzota 

(see also [16] for a different proof). 

which is of the form 
In higher dimensions we define the integral for a function f(z) = f(zl , .  . . , z") 

(with constant coefficients) by 

Using the onedimensional result (A.7) we find 

where xo + a Stands for (2: + a',. . . , x; + a n )  and 

, i t a '  z b t a "  Lr+a dx  := 1, dx' . . . L, dxn . 

This definite integral extends as a 6-distribution to arbitrary functions f(x). 
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Appendix B. The Laplace-Beltrami operator 

In section 5 we introduced a Hodge * operator for the non-commutative differential 
calculus (5.1) in n dimensionst. This allows us to generalize the classical definition 

A Dimalds, F Miliier-Hoissen and T Striker 

6 := *d * (-l)n(rt') (B.1) 

(acting on r-forms) of the adjoint operator associated with d to the non-commutative 
framework. An r-form w can be written as 

and similarly 

t The melric is taken CO be Euclidean and has the componenu 6,, with respect to rhe coordinates z * ,  
The following calculations are easily translated to the case 01 the Minkowski metric with components q,,  
in the coordinate systcm I ) .  
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we obtain for the Laplace-Beltrami operator 

A := d 6 + 6 d  (B.8) 

the following formula 

A w ( z )  = -- r! dI" . . .dx"a,a  - j w ; , , . , ; ~ ( r - a ) .  (B.9) 

Here we recover the lattice version of the Laplace-Beltrami operator (see [NI, for 
example), apart from the shift I ++ z - X I ,  ak in the argument. It appears in the 
description of fermions on a lattice by the Dirac-KShler equation (see [17,18], for 
example). 

Appendix C. Classification of two-dimensional calculi 

In this appendix we solve the consistency conditions for the class of differential calculi 
introduced in section 2 with the restriction to two dimensions and real comtanf 
coefficients Ccjk.  We classify the solutions into orbits with respect to GL(2,R)- 
transformations which mix the coordinates I'. 

Every two-dimensional matrix can be written as a linear combination of the 2 x 2 
unit matrix I and a trace-free matrix. Since an Abelian subalgebra of the algebra 
of 2 x 2 matrices is at most two-dimensional, the consistency condition [Cl, C2] = 0 
implies 

C' = A' I + p i  T F-1) 
with trT = 0. Then 

x i  = 4 t r c i .  

Under a GL(2,R)-transformation with matrix A = ( A j )  the matrices Ci transform 
as follows 

C" = A; ( A C ~  A - ' )  = (at; A ~ ) I  + ( ~ j  pj) ( A T A - * )  . ( c 3 )  

Hence 

(C.4) Cl' = A" I + @,' TI 

with 

T ' = A T A - ' .  (C.9 A!' = ~j ~j = ~j pi 
The next step is to choose representatives for T from every orbit of real trace- 
free matrices with respect to the adjoint action of GL(2,R) which is the same as 
the adjoint action of SL(2,R). The orbits are easily determined and we discuss 
convenient representatives in turn. For each of them we have to solve the consistency 
condition (2.6) which means that the second row of C' is equal to the first row of Cz. 
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(1) T = 0. The consistency condition (2.6) enforces A’ = 0 and therefore C’ = 0 
which is the classical (undeformed) differential calculus. 
(2) Two other orbits are represented by 
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0 0  
T = 4  0 ) .  

It is sufficient to treat the case with the positive sign since the sign can be absorbed 
into pi .  (2.6) requires p1 = A’, A’ = 0 so that 

The isotropy group of T is 

(a) If A2 = 0 (and p* f 0) we can use a G,-transfomation (with suitably chosen a )  
to achieve pz = 1. Hence 

c q ;  ;) cz= (; ;) 
(b) If X2 # 0 we can use the isotropy group to arrange for X2 = 1. This breaks GT 
to the subgroup of matrices 

For these matrices and the C’ given above the transformation law (C.4) takes the 
simple form 

C“ = C’ C” = bC’ + Cz ( C 8 )  

which shows that we can choose b to eliminate p2. We arrive at 

(3) Another family of orbits is represented by 

(C.10) 

It is sufficient to consider the case p = 1 since p can be absorbed into pi. (2.6) now 
leads to p1 = A’ , pz = -A2. The isotropy group of T is in the present case 
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(C.11) 

so that we can transform 2X' to 1 if A; f 0. We thus obtain the following two 
solutions 

c ' = ( o  0 0  o) c2= (: ;) 
and 

(4) The remaining family of orbits is represented by 

Again, we only have to consider p = 1. (2.6) leads to 

It is more convenient to express C' in the form 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

with p, x E E. The isotropy group of T is 

GT = { a  ( s inq  cosrp -sinrp cosrp ) l a , r p E R , a # O )  

and can be used to transform p to 1. Under the remaining G,-transformations with 
a = 1 the transformation law (C.4) for our matrix C' becomes 

~ " = ( c o s i p ~ - s i n i p ~ ) ~ '  (C.17) 

so that 

Choosing rp = -x we end up with 

= ( O 1) c ' =  (A ;) -1 0 
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Let us summarize our results. 

Theorem. All consistent differential calculi satisfying the commutation relations (2.3) 
with real constant coefficients Ci jk  in two dimensions are given modulo GL(2,R)- 
transformations by (C.7), (C.9), (C.12), (C.13), (C.19) and the standard (undeformed) 
calculus. 

The classification is the same for purely imaginary coefficients Cijk.  The 
corresponding representatives of orbits are simply obtained by multiplication of the 
C'jk found above with the imaginary unit i. Since the requirement of having an 
operation ' on the differential algebra which generalizes the conjugation of complex 
numbers (see section 2) restricts complex coefficients C'j, to be either real or 
imaginary, we thus have a complete classhlcation in two dimensions. 

(C7) is the two-dimensional version of the calculus considered in [Ill. (C.12) and 
(C.13) are the direct sum of one-dimensional calculi (see section 3). (C.9) and (C19) 
determine new differential calculi and we refer to appendix D for a brief discussion. 

Appendix D. Additional diRerentIal calculi in two dimensions 

In appendix C we have determined and classified all consistent differential calculi 
of the form (2.2) and (2.3) with real or imaginary constant coefficients C'jk in NVO 
dimensions. Besides direct sums of the one-dimensional calculus of section 3 there 
are modulo GL(2, R)-transformations three additional possibilities which we discuss 
in the following. 

(1) The first is given by 

[ z ' , d z ' ]  = 0 

[ z l ,  dz'] = 0 

[z', dz'] = 0 

[ z', dz'] = qdz '  

where q is a complext parameter. For q = 1 this corresponds to (C.7). This is the 
two-dimensional version of the differential calculus studied in Ill]. For this calculus 
there is no 1-form 0 to express d as the (anti-) commutator with 0 (see the last 
paragraph of section 2). 

If we define le@ and right partial derivatives by 

df = 8-J dz' = ds '  aif (D.2) 

then 

t The two possibililies lo extend the complex conjugation Io the whole differential algebra discussed in 
section 2 constrain g lo be real or imaginary. 
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and 

where a/ax '  are ordinary partial derivatives. 
(2) The second calculus is 

[z ' ,  dz']  = 0 

[ + I ,  dz'] = qdz'  

[ z2 ,  dz ' ]  = qdz' 

[ zz , dz'] = qdz' 

and corresponds to (C.9) for q = 1. The exterior derivative d can be expressed in 
the form (212) with the 1-form 

P.6) 
1 

.Up = - - d z 2 .  
P 

The partial derivatives are realized by 

and 

Their action on a function f ( d, z2)  is given by 

and 

(3) The third calculus is 

[ z' , dz'] = qdz' 

[ z ' , d z z ] = q d z z  

[ z z ,  dz ' ]  = qdz' 
[ z 2 , d z 2 ] = - q d z  1 . 

(D.13) 
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When q = 1 this corresponds to (C19). The exterior derivative d can be expressed 
in the form (212) with the 1-form 
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19=--d+ 1 '  . (D.14) 
4 

The left and right partial derivatives are realized by 

(D.16) 

and 

(D.18) 

respectively. Introducing z := (x '+ir2)/2,  the above commutation relations can be 
written as 

[ z ,  dz]  = qdz 

[ z ' ,  dz]  = 0 

[ z ,  dz'] = 0 

[ z* , dz' ] = q' dz' 

(D.19) 

where the * denotes complex conjugation. This calculus thus emerges from the sum 
of two complex one-dimensional calculi 

[ zi , dz j  ] = qj 6' j  d g  (no summation) (D.20) 

by imposing the constraints (zl)* = z2, 9; = q2. Each of the onedimensional 
calculi is a complex version of the real calculus considered in section 3. The partial 
derivatives obtained by writing d f  as a linear combination of dz and dz* are discrete 
derivatives. 

It still has to be seen whether the last two calculi listed above have applications to 
physics. Relaxing the assumption that the C'Jk in (2.3) are constants and replacing 
them by functions of the xi will lead to further consistent differential calculi. The 
question whether these can be transformed to calculi with constant coefficients is a 
complicated problem (see the first remark in section 3). 



Non-commutative diferential calculus and lattice gauge theoty 1949 

References 

[1] Connes A 1986 Noncommutative differential geometry PubL I.H.E.S. 62 257; 19W G6omChe non 

Kastler D 1988 QvIic Cohomologv (Paris: Hermann) 
Coquereaux R 1990 Noncommutative geometry and theoretical physics I .  G e m  P h p  6 42.5 

[Z] Majid S 1988 Hopf algebras for physics at the Planck scale C k  Q u a ~ u n  Grw. 5 1587 
[3] Dubis-Violette M, Kemer R and Madore J 1989 Classical bosons in a noncommutative geometiy 

[4] Madore J 1992 The funy sphere Clm. Quannrm Grm! 9 69; 1991 Quantum mechanics on a fuzzy 

[5] Wilson K G 1974 Confinement of quarks Phys Rev. D 10 2445 
[6] Drouffe J M and Itzykson C 1978 Lattice gauge fields Phys. Rep. 38 134 
[7] Guth A H 1980 Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge 

[SI Creutz M 1983 Quw!~, ~ u o n r  and larrices (Cambridge: Cambridge Universily Press) 
[9] Kogut J B 1983 Lattice gauge theory approach to quantum chromodynamics Reu Mod Phys 55 785 
[lo] WorcnaKicz S L 1989 Differential calculus on compact mat& pseudogroups (quintum groups) 

[ll] Dimakis A and Mliller-Hoissen F 1992 Noncommutative differential calculus, gauge theory and 

1121 Manin Yu 1 1989 Multiparametric quantum deformation of the general linear supergroup Commun 

[13] Dimakis A and Muller-Hoissen F 1992 Quanlum mechanics as noncommutative symplectic geometry 

1141 Eguchi T and Kawai H 1982 Reduction of dynamical degrees of freedom in the large-N gauge 

[IS] Parisi G 1982 A simple expression for planar field theories Phys Len. 112B 463 
Bhanot G, Heller U M and Neuberger H 1982 The quenched Eguchi-Kawai model Phys Left 113B 
47 

Eguchi T and Nakayama R 1983 Simplification of quenching procedures for large N spin models 
Phys Len. l22B 59 

Fabricius K, Haan 0 and Filk T 1984 Generalized twisted Eguchi-Kawai models Phys. Left 1448 
240 

[16] Dimakis A and Muller-Hoissen F 1952 Quantum mechanics on a lattice and qdeformations Phys 
Len. 295B 242 

[17] Becher P and Joos H 1982 The Dirac-KZhler equation and fermions on the lattice Z Phys C 
15 343; 1984 On Ghler's geometric description of Dirac fields Progress in Gauge Field Theory 
ed G I'Hooft er al (New York: Plenum) p 241 

c m u ~ a ' v e  (Paris: InterFditions) 

Clam Quantum Grau 6 1709 

sphere Phys L e r L  263B 24% 1992 Fuzzy physics Preprinr LPTHE Orsay 92431 

theory Phys. Rm D 21 2291 

Commwr Moth Phys. 122 125 

gravitation Preprinr Gdttingen GOET-TP 33/92 

Mnrk Phys 123 163 

J. Phys, A: Matk Gen 25 5625 

theory P h p  Rm. Lett 48 1063 

[la] Rabin J M 1982 Homology theory of lattice fermion doubling NucL Phys. B 201 315 


